

المركز الوطني للتقويم والاعتماد الاكاديمي National Center for Academic Accreditation and Evaluation

ATTACHMENT 5.

T6. COURSE SPECIFICATIONS (Phys 102)

Institution: King Khaled University	Date:	07-10-2019
College/Department : Faculty of science/ Physics	s Departmen	t

A. Course Identification and General Information

1. Course title and code:				
Phys 102 (General Health)				
2. Credit hours: 4(3+1)				
3. Program(s) in which the course is off	3. Program(s) in which the course is offered.			
(If general elective available in many pr	ograms indicate this rather than list programs)			
The Academic program at the Dept. I	Physics, Boys and Girls			
4. Name of faculty member responsible	e for the course			
Dr. Muhammad Shabbir, Dr Sohail a	nd Dr. Bakhtiar ul Haq			
5. Level/year at which this course is off	fered: Third level			
6. Pre-requisites for this course (if any)	:			
Nothing				
7. Co-requisites for this course (if any):				
General physics lab				
8. Location if not on main campus:				
Mahala Campus Joint Program				
9. Mode of Instruction (mark all that ap	oply):			
a traditional classroom	100 What percentage? 100			
	100 What percentage. 100			
b. blended (traditional and online)	What percentage?			
c. e-learning	What percentage?			
d. correspondence	What percentage?			
f. other	What percentage?			
Comments:				

B Objectives

1. What is the main purpose for this course?

To understand:

- > Principles of physical measurements, conversion of units, dimensional analysis.
- > All algebraic processes related to vector quantities.
- Motion in one dimension (average speed, velocity, instantaneous velocity, instantaneous acceleration, free falling objects)
- > Newton's laws of motion, friction force and different applications.
- > Work, kinetic energy, work-energy theory and conservative forces.
- > Potential energy.
- Buoyant forces, Archimedes principle, pressure of fluids, equation of continuity and Bernoulli's equation.
- > Static equilibrium, torque and elasticity.
- > Electric conductivity, electric current and electric energy.

2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

(Increasing the use of IT or web based reference material, changes in content as a result of new research in the field)

- > Using some conventional textbooks or from Internet.
- Executing all objectives
- Tutorials (Theoretical and digital problems) by encouraging the student to use graphics and computers facilities.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

1. Topics to be Covered

	No. of	
List of Topics	Weeks	Contact hours
1- measurements, units and vectors(Scalar and vector product of vectors and applications)	3	9
2- motion in one dimension and motion in two dimensions. (Examples and problems)	2	6
3- Newton's laws of motion.	2	6

4- Work, kinetic energy and potential energy.	2	6
5- Fluid dynamics.	1	3
6 Electric field and potential.	1	3
7- Light and optics (Nature of light and laws of geometric optics)Image formation by (flat mirrors, reflection-spherical mirrors).	2	6
8- Temperature, temperature scale Examples and problems	2	3
List of Topics (Practical)	No. of	Contact hours
List of Toples (Tractical)	Weeks	Contact nours
1-Measurement of errors	1	2
2- Helical Spring (Static Method)	1	2
2 Honour Spring (Studie Method)		
3- Refractive index	1	2
 3- Refractive index 4- Coefficient of Viscosity by Stokes 	1 2	2
 3- Refractive index 4- Coefficient of Viscosity by Stokes 5-Thin Lenses 	1 2 1	2 2 2 2
 3- Refractive index 4- Coefficient of Viscosity by Stokes 5-Thin Lenses 6- Specific heat capacity of solids 	1 2 1 1	2 2 2 2 2
 3- Refractive index 4- Coefficient of Viscosity by Stokes 5-Thin Lenses 6- Specific heat capacity of solids 7- Simple Pendulum 	1 2 1 1 1	2 2 2 2 2 2 2
 3- Refractive index 4- Coefficient of Viscosity by Stokes 5-Thin Lenses 6- Specific heat capacity of solids 7- Simple Pendulum 8- Simple DC Circuits and Ohms law 	1 2 1 1 1 1	2 2 2 2 2 2 2 2
 3- Refractive index 4- Coefficient of Viscosity by Stokes 5-Thin Lenses 6- Specific heat capacity of solids 7- Simple Pendulum 8- Simple DC Circuits and Ohms law 9- Surface Tension and capillarity. 	1 2 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2

2. Course components (total contact hours and credits per semester): 15							
		Lecture	Tutorial	Laboratory/ Studio	Practical	Other:	Total
Contact	Planed	45			15		60
Hours	Actual	45			15		60
Credit	Planed	3			1		4
	Actual	3			1		4

Course Specifications, Ramadan 1438H, June 2017.

3. Additional private study/learning hours expected for students per week.

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

- > A brief summary of the knowledge or skill the course is intended to develop;
- > A description of the teaching strategies to be used in the course to develop that knowledge or skill;

The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **Second**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **Third**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NQF Learning Domains	Course Teaching	Course Assessment				
#	And Course Learning Outcomes	Strategies	Methods				
1.0	Knowledge						
1.1	Principles of classical Physics	Lecturers	Exams				
1.2	Practical Knowledge of Physics	Lecturers	Exams				
2.0	Cognitive Skills						
	To differentiate between vectors and scalars, concept	Classroom lectures and	Exam and				
2.1	of work energy, differentiate between transverse and	discussions	Assignment				
2.1	longitudinal waves, sound and auditory response		_				
	listening						
	To understand the concept of viscosity in fluid flow,	Classroom lectures and	Exam and				
2.2	Study of blood pressure, effects of acceleration of	discussions	Assignment				
	blood pressure.		_				
3.0	Interpersonal Skills & Responsibility						
2.1	To apply laws of physics studied in this course to	Classroom lectures and	Exam and				
5.1	medical field	discussions	Assignment				
	To apply the concept of fluid flow, intensity level of	Classroom lectures and	Mid Exam and				
3.2	sounds, lens, defects of eyes, and hazards of	discussions	Assignment				
	radiations from medical Physics points of view.						
4.0	Communication, Information Technology, Numeric	al					
4.1	Numerical problems based on mechanics (vectors,	Tutorials	Exams				
4.1	force, work energy, power)						
	Numerical problems based on equation of continuity,	Tutorials	Exams				
12	Bernoulli equation, Poiseuelle's law, intensity of						
4.2	sound, Lens formula, snell's law, critical angle and						
	half-life of radioactive sample.						
5.0	Psychomotor						
5.1		Practical	Practical exam				
5.2							

5. Schedule of Assessment Tasks for Students During the Semester					
	Assessment task (i.e., essay, test, quizzes, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment		
1	Assignments	Throughout	2.5		
1	* Choose best one from two Quizzes and Assignments	the semester			
2	Quizzes Theory *		2.5		
2	* Choose best one from two Quizzes and Assignments				
	Midterm Exam - Theory	Week 11 / 12	20		
3	Practical Exam	Week 13 / 14	25		
4	Final Exam -Theory	Week 16 / 17	50		

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

10 office hours by the faculty in a weekly schedule

E Learning Resources

1. List Required Textbooks

General Physics, 2nd Edition. Joseph W. Kane, Morton M. Sternheim, ISBN: 0471809063

2. List Essential References Materials (Journals, Reports, etc.)

University Physics: Models and Applications, William P. Crummett, Arthur B. Western, ISBN-10: 0697111997 ISBN-13: 978-0697111999, William C Brown Pub (January 17, 1994). Physics, Volume 1, Robert Resnick, David Halliday, Kenneth S. Krane, 5th Edition, Wiley; 2001. ISBN-13: 978-0471320579, ISBN-10: 0471320579

3. List Electronic Materials, Web Sites, Facebook, Twitter, etc.

www.lms.kku.edu.sa to access lecture notes, text book, lab manual, announcements related to the course etc.

www.ieee.org and www.acm.org to search latest research in relevant field.

4. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access, etc.)

1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.) One lecture rooms with 50 seats

2. Technology resources (AV, data show, Smart Board, software, etc.) Data Show (Projectors) in lecture room.

3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching At the end of semester written feedback is taken from students about course content, teaching methodology and their understanding of the course.

2. Other Strategies for Evaluation of Teaching by the Instructor or by the Department Departmental evaluation from students about teacher.

Course evaluation report from the course coordinator after the exam

3. Processes for Improvement of Teaching

Observations made from the course evaluation report by the course coordinator Head of department observations, suggestions, instructions etc.

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution) The course coordinator to verify the standards of the student achievements

5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

The subjects are reviewed periodically by the Subject committee and the head of the department for review and improvement. Subject committee comprising of all theory and lab staff of the course, conduct meetings to review the progress of the course.

Name of Course Instructor: Dr. Muhammad Shabbir

Signature:

SP DI.C	
- haubbir	

Date Specification Completed: __07-10-2019____

Program Coordinator: Dr. Mohamed H.A. Suleiman

Signature: _____

Date Received: _____

Course Specifications, Ramadan 1438H, June 2017.