

ATTACHMENT 5.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

T6. Course Specifications (CS)

المملكة العربية السعودية الهيئة الوطنية للتقويم والاعتماد الأكاديمسي

Course Specifications

Institution: King Knalid University			Date: // 1437
College/Department: Medical Sciences/	Chemistry		
A. Course Identification and General Info	ormation		
1. Course title and code: General Chem	istry for Heal	th Sciences 110-Che	em-2
2. Credit hours: 2 (1+1)			
3. Program(s) in which the course is off			
(If general elective available in many pr	ograms indicate	ate this rather than lis	st programs)
Healthy Sciences Program			
4. Name of faculty member responsible	tor the cours	se:	
Dr/ Mohamed Mohamed Abdel-Aziz 5. Level/year at which this course is off	forad: I 2/V1		
6. Pre-requisites for this course (if any)			
o. The-requisites for this course (if any)	. 140		
7. Co-requisites for this course (if any):	No		
8. Location if not on main campus: Aca	idemic Buildi	ng at Mahalah	
9. Mode of Instruction (mark all that ap	oply)		
a. traditional classroom	Yes	What percentage?	
b. blended (traditional and online)	Yes	What percentage?	
c. e-learning	Yes	What percentage?	
d. correspondence		What percentage?	
f. other		What percentage?	
Comments:			

B Objectives

- 1. What is the main purpose for this course?
- Teaching the students the general concepts of basic inorganic, physical and analytical chemistry such as: atomic structure, chemical bonding, periodic table, Intermolecular forces and chemical calculation.
- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)
- Increasing the use of E-learning.
- Providing more electronic materials in lectures.
- Updating the course content based on problems that will arise in community.
- Updating with the techniques that will be recently introduced in the field.
- C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

1. Topics to be Covered:		
List of Topics	No. of	Contact
a) Theoretical	Weeks	hours
Definition of some general chemistry - related terms	1	1
History of atomic structure	1	1
Quantum theory and electronic structure of atom	1	1
Quantum numbers and Electronic configuration	1	1
Periodic table and the Properties of Elements	1	1
Midterm Exam 1	1	1
Measuring Units	1	1
Uncertainty in measurements	1	1
Significant Figures	1	1
Solving problems	1	1
Midterm Exam 2	1	1
Molecular Forces:	1	1
Intramolecular forces & Chemical bonding		
Intermolecular attractive forces (IMF)	1	1
States of matter and phase change	1	1
Phase diagram & Properties of liquids	1	1

		List of Top	ics		No. of	Contact
b) Practi	cal	_			Weeks	hours
Safety and de			ic glassware an	d tools used in	1	2
	(chemical ana	lysis			
Volumetric analysis				2	2	
		Titration of a	cids		1	2
Titration of bases					1	2
	Ti	tration of mi	xtures		1	2
Determination of total hardness of water					1	2
Oxidation reduction reactions			1	2		
Titration of iron (Fe) with potassium permanganate			1	2		
Determination of cupper (Cu) by sodium thiosulphate				1	2	
Determination of NaCl by silver nitrate				1	2	
Final practical exam					1	2
2. Course components (total contact hours and credits per semester):						
	Lecture	Tutorial	Laboratory or Studio	Practical	Other:	Total
Contact Hours	13	-	-	22	-	35
Credit	13	-	-	11	-	24

3. Additional private study/learning hours expected for students per week.	

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

Code #	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
1.0	Knowledge: The students are able to		
1.1	Classify the different types and states of matter	- Theoretical lectures	- Two Midterm-Exams
1.2	Define the chemical-related terms	through traditional	- Final Exam
1.3	Determine the types of molecular forces	classroom.	- Homework using
1.4	Describe the electronic structure of atoms	- Supplying lecturers and	Blackboard (Bb).
1.5	Clarify the different measuring units	videos using E-learning (Bb)	
1.6	Demonstrate the different properties of elements of		
	modern periodic table		

2.0	Cognitive Skills: The students are able to		
2.1	Differentiate between quantum and classical mechanics	Theoretical lectures through	- Two Midterm-Exams
2.2	Compare between intra-and intermolecular forces	traditional classroom.	- Final Exam
2.3	Apply the mathematical equations to solve problems	- Supplying lecturers and	- Homework using
2.4	Design the electronic structure of the atom	videos using E-learning (Bb)	Blackboard (Bb).
3.0	Interpersonal Skills & Responsibility: The students are	able to	
3.1	Share with their classmates to do as a team work	- Work constructively in a	- Supervising students when
3.2	Tolerate the tasks that must be done	group	working individually and in a
3.3	Lead a group of students to conduct a specific task	- Discussing during lectures	group
		and practical lessons	- Observing students how
		- Assigning the student to	they participate during the
		explain some lessons for his	discussion and working as a
		classmates	team
4.0	Communication, Information Technology, Numerical:	The students are able to	
4.1	Communicate with their classmates and their teacher via	- Theoretical lectures	- Assignment via blackboard
	different multimedia (Social media, E-mail, Course	through traditional	- Solving mathematical
	mail,etc)	classroom.	problems in Midterm and
4.2	Use the computing technology to update and research	- Assigning the students to	final exams
	the scientific information	search via internet for	
4.3	Calculate the required data from measured quantities	gathering the scientific	
	Solve the different mathematical problems related to	information	
	course		
5.0	Psychomotor: The students are able to		
5.1	Handle the glassware and equipments	- Explanation of some	- evaluation of handling the
5.2	Precisely measure the physical quantities using	common errors that related	analytical tools via
	analytical tools	to chemical analysis in	continuous observing and
5.3	Gain the sense, monitor the errors and detect the	classroom and laboratory	manual assessment
	measuring bias in chemical analysis		- Final practical exam

6. Schedule of Assessment Tasks for Students During the Semester

	Assessment task (e.g. essay, test, group project, examination,	Week Due	Proportion of Total
	speech, oral presentation, etc.)		Assessment
1	Handling in laboratory and reports	Continuous	10%
2	Midterm Exam I	7 th week	12.5%
3	Midterm Exam II	11 th week	12.5%
4	Theoretical Final Exam	16 th week	50%
5	Practical Final Exam	14 th week	15%

D. Student Academic Counseling and Support

- 1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)
- Office hours: 10 hrs/week.
- Additionally, teachers are available at their offices for any inquiries from students and advice.

E Learning Resources

- 1. List Required Textbooks:
 - Essential Chemistry, Atoms, Molecules and Compounds. Phillip Manning, Copyright © 2008 by Infobase Publishing.
 - Essential of Chemistry. Søren Prip Beier & Peter Dybdahl Hede, Chemistry 2nd edition © 2010, VenlusbPublishing Aps, ISBN 978-87-7681-535-6.
- 2. List Essential References Materials (Journals, Reports, etc.):

Textbook of physical chemistry (Glasstone, S.)

- 3. List Recommended Textbooks and Reference Material (Journals, Reports, etc):
- Analytical chemistry, G.D. Christian 6th edition, John Wiley & Sons, 2003.
- 4. List Electronic Materials, Web Sites, Facebook, Twitter, etc.:
- http://www.chem1.com/chemed/
- http://www.dac-euchems.org/reports/education/index.html
- http://en.wikipedia.org/wiki/Analytical_chemistry
- 5. Other learning material such as computer-based programs/CD, professional standards or regulations and software.
- CD containing course

المملكة العربية السعودية الهيئة الوطنيسة التقويم والاعتماد الأكاديمسي

Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
- One classroom equipped with 60 student seats.
- One laboratory for general chemical analysis equipped with 30 student seats.
- 2. Computing resources (AV, data show, Smart Board, software, etc.)
- One computer for teacher in the classroom.
- Data show for power point presentation.
- 3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

- 1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching:
- Confidential completion of course performance evaluation questionnaire.
- 2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department:
- Discussion with other staff members.
- Discussion with the students.
- 3 Processes for Improvement of Teaching:
- Training courses on development of teaching performance.
- Training courses on educational technology.
- 4 Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution):
- Oral examination by external examiner.
- Student exam papers exchange with other universities.
- Student competition in a national level.

Name of Instructor: Dr/ Mohamed Mohamed Abdel-Aziz Mohamed				
Signature:				
Date Report Completed: 2 nd Sem	ester 1436/1437			
Name of Field Experience Teach	ing Staff			
Program Coordinator:				
Signature:	Date Received:			